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Within the ADM technique of Hamiltonian cosmology, in the case of Bianchi 
class A models, we introduce a Fock-like, field theoretical approach to the 
description of quantum cosmology. We then calculate the total transition ampli- 
tude between two quantum states of the state functional of the ADM geometry. 

1. I N T R O D U C T I O N  

It is still an open problem whether the evolution of the very early stages 
of general relativistic cosmologies is influenced by quantum gravitational 
effects. The problem is, not only whether to believe in a drastic change of 
character of a particular cosmology, but also how to calculate in a reliable 
way these quantum gravitational effects. It is fair to say that at present we 
are far away from a satisfactory theory of quantum gravity and that we are 
pushed by necessity, in dealing with this matter,  toward the use of ap- 
proximate methods. 

On the other hand we may look for the possible connections between 
some particular problems in gravitation and similar procedures a n d / o r  
techniques successfully used in other nonlinear field theories, and it is in 
this spirit that we present our paper. Thus this work is not concerned with 
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quantum gravity per se [for a review of the canonical formalism of quantiza- 
tion, usually used in quantum cosmology, see K. Kuchar (1981)], but rather 
with the stability under quantum effects of homogeneous cosmological 
solutions, and we try to address the question of how a particular cosmologi- 
cal configuration would evolve very close to the singularity. 

One of the first attempts at the understanding of these issues is 
the investigation of the so-called quantum cosmological models, first pro- 
posed by Misner (1969) and later reviewed by MacCallum (1975). 
Quantum cosmological models considered so far in the literature rely on 
the ADM formulation of Hamiltonian cosmology. At first it was realized 
that it is possible to regard certain kinds of cosmological models as the 
solution of particular scattering problems, that is, to consider the motion of 
a point particle in a given potential. Later the usual procedure of 
SchrOdinger-Klein-Gordon to quantize this system was applied. One of the 
main results of that investigation is that the universe wave packet, which 
replaces the universe point is nonquantized Hamiltonian mechanics, is not 
spread out in time and evolves toward a singularity as in the classical case. 

In this paper, to achieve a quantum description of the homogeneous 
gravitational fields wepropose a "third quantization" formalism of gravity. 
The paper starts with a theory in which the components of the metric are 
operators, i.e., a "second quantized" form, and then makes the state 
functions of that second quantized theory into operators, realizing in this 
way a "third quantization" of the gravitational field. The radical nature of 
this formalism is made clearer by noticing that the action being quantized is 

S= fdadB+ dfl_ [( O .g , )2 (B+, f l_ ,a )+  R(fl+,B_.a)q,2(fl+.B_,a)]. 

Here the "coordinates" f~, fl+, fl_ are those of the superspace, so that the 
most striking feature of this action is that the integral is over superspace and 
not over space-time like every other standard action. 

Let us stress again that our main interest is, so to speak, more practical 
than formal, believing, as we do, that there is very little conventional 
wisdom one can appeal to in quantum gravity, and that we should not a 
priori close our doors to new methods. By the same token, we do not wish, 
in presenting an approach whose shortcomings will be clear from the 
beginning, to impose on our readers a blind faith in the truth of our 
conclusion, but only to stimulate them to investigate potentially powerful 
techniques. 

In a quantum field theoretical approach, like the one described in this 
paper, we can consider the ADM potential as an interaction Lagrangian 
term and study the problem as a perturbative one. This way of treating the 
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super-Hamiltonian was first advocated by Isham (1976) and, more recently, 
has been developed by Pilati (1981) into what is called "strong coupling 
quantum gravity." To be more precise, rather than study the evolution of a 
wave described by a Kle in-Gordon  type equation, we pass to a formalism 
of quantum field theory in which the Kle in-Gordon  field is an "operator  
field" (which we shall call the "universe field") and we calculate the 
transition amplitudes between two quantum states of the associated Fock 
space. The more natural interpretation of this formalism is that the Hitbert 
space consists of states containing an arbitrary number of universes and the 
creation and annihilation operators create and annihilate universes. We 
restrict ourselves to Bianchi-Behr models of type A 6 (namely, Bianchi types 
I, II, VI 0' VII 0' and IX) where it has been proved that Hamiltonian 
techniques are applicable. Then, using a perturbative Feynmann and 
Dyson-like S-matrix formalism on the superspace, we find the correspond- 
ing finite transition amplitudes. 

Let us clarify here some aspects of our approach to the third quantiza- 
tion of the ADM cosmological models. We adopt an "external" point of 
view (Thirring, 1958) for the ADM potential; namely, we regard it as a fixed 
c-number function of superspace. The consequence of this interaction is that 
the Heisenberg field operator (represented by the universe field) creates 
virtual intermediate states which are excitations of the physical (asymptotic) 
states which represent quantum Kasner universes. This may be understood 
as a production of virtual universes which will have as a consequence that 
certain transition channels between initial and final universe states are 
forbidden at least in the framework of perturbative theory. This might be 
interpreted as due to the fact that nontrivial ADM perturbations have 
moved out of the initial quantum Kasner states of the asymptotic Fock 
space. 

2. FIELD QUANTIZATION FORMALISM FOR 
H O M O G E N E O U S  CLASS-A C O S M O L O G I E S  

In what follows we shall consider space-times whose metric can be 
written in the form (we use geometrical units c = h = 8~G = 1) 6 

ds 2 = _ (It 2 + R 2 e -  2~2e2BuwiwJ (1) 

where f] is a monotonic function of the time t, R is an arbitrary scale factor, 
fl ij is a 3 • 3 symmetric time-dependent matrix, and ~o k are the time-inde- 
pendent differential one-forms obeying the relations d c o '  t , i A k = ~ C j k O ~ o  . More- 
over, C~k are the structure constants of the group of motions admitted by the 
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space-like hypersurface of the metric (1). From our assumption on the 
monotonic time dependence of ~2, it follows that the ADM formalism 
promotes f~ as a time-labeling coordinate. The same formalism prescribes a 
canonical writing for the Einstein action I which, in the case of Bianchi 
class-A models, reads 

I = f P +  d/3+ + P d/3_ - I-Ida (2) 

where H 2 is defined by the classical constraint 

H 2 _  p2  _ p2___ e -4a[ U( f l+ , f l _  ) - 1 ]  = 0 (3) 

Here /3• are such that f l i i=diag[fl+,(x/5 / 2 ) / 3 _ - ( / 3 + / 2 ) , - ( r  /2)/3_ 
- ( f l + / 2 ) ] ,  and P• which are defined in Ref. 6, are independent variables. 
They can be regarded as a parametrization of the momenta rr, j conjugated to 
the metric gij. Let us notice that the momenta P• and the intrinsic time 
variable f~ are functionals of the three-geometry gii" The ADM Hamiltonian 
(3) is the same as for a particle " the  universe point" moving in the 
two-dimensional fl+, /3_ plane, under the influence of the time-dependent 
potential e -4a[U( f l+ , /3_) - l ] .  The values of the potential U are listed 
in Ref. 6. A major advantage of the ADM formulations consists then 
in the reduction of the equations that govern the evolution of the universe 
to a form totally similar to ordinary scattering problems. The first step 
toward quantization of the system (3) can be done in the Schrrdinger- 
Klein-Gordon representation, where we make the usual prescription 

_ _ e  
O H---+/2/= _ i 0a  (4) P ;  --, P ;  - - i 0/3~ ' 

One can also def ine/5 = (/7/,/5+,/5_ ) and Z ~ = (fL 13+,/3_ ) with/ ,  = 0,1,2, 
so that (4) becomes 

0 
e .  - ,  - - ;  o z .  ( 5 )  

Because of the operational nature of the representation (4) or (5), the 
classical constraint (3) becomes a weak relation: 

o~ l qJ = 0 (6) 

where ,)if• the so-called super-Hamiltonian, is given by 

{ a e .  = a e o -  

-'*'o - - 

(7) 
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The dynamics of the full theory is generated by. ,~ . .  Our goal is to study the 
quantum theory generated by "~P0, which is similar to a three-dimensional 
Klein-Gordon operator, and then to include as a perturbation the e-4~[U 
- 1 ]  term as from equation (7). Then the free dynamics is controlled by 

 o4'o = 0 (s) 

where 4'0 is a state functional which defines the domain of Off 0. Equation (8) 
determines the development of 4'o in the intrinsic time fl and in the intrinsic 
space coordinates (fl+,fl_). Of course, 4'o is actually a functional of the 
metric g~j, i.e., 4'o = 4'o[gij, f~] . The fact that 4'o depends only on three 
degrees of freedom, and not on the six independent components of gij, is a 
direct consequence of the general covariance associated with changes of 
coordinates on a spacelike hypersurface. In a general case one would be left 
with a three-gauge freedom. In our case this is fixed by the requirement of 
spatial homogeneity. Roughly speaking, at this stage we are treating the 
quantum theory of the vacuum Bianchi geometry as a ficticious finite- 
dimensional quantum mechanics on the space of g~j (the true geometry has 
not been quantized at all). This fact becomes more apparent if we rewrite 
equation (6), making use of (5), and we get 

31::]4'(fl+,fl_,~2)+e-4~[U(fl+,fl_ )- l]4'( f l+,f l_,~2)=O (9) 

where 3m= ~""(O/Oz~')/(O/Oz ~) and ~/"P- ( + ,  - ,  - ) .  Equation (9) is a 
three-dimensional, massive, Klein-Gordon equation with e -4a [U-1] ,  a 
a-time-dependent, masslike term. Its plane wave solution, i.e., the 4'0, 
describes an independent quantum Kasner universe (i.e., Bianchi type-I 
solution). Because increasing (decreasing) f~ corresponds to an expanding 
(contracting) universe, we define each positive (negative) frequency state of 
4'o as that describing an expanding (contracting) Kasner geometry. Since in 
this paper we assume the "spatial homogeneity," there is only one quantum 
Kasner solution to describe the whole universe. 

In what follows we introduce a Fock space structure for the space of 
the states of/2/0. To this aim first we define a Hilbert space structure G on 
4'o(fl, ~2). We start from the definition of the space of the square integrable 
functions u(fl+, ~_) with the inner product: 

<ulu'> - fdr (u*u') 0o)  

The operator 2A---(Oz/Of12+02/OB2) is positive definite and self- 
adjoint, with respect to (10) on this space. Then ZA possesses a complete, 
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orthonormal set of eigenstates uE. 

2AuEp= E~UEp (11) 

In order to define G we now have to include the f~-time dependence into the 
states uEp. There seems no unique way of doing this. Following the sugges- 

tion of Ref. 8, we define the new state function ~,o(fl+,fl_,~2) as linear 
combination of the two f~-dependent states uEexp(iEp~2) for any EI, > O. 
We then give a (pre)Hilbert structure ~ to the space of ~o(fl+, fl , f~), if we 
endow it with the following inner product: 

/(+~ = �89 .~o.~, d/~ +dB_ (~8(~) ~'3-6 J+o (~)) 
[ A -ff~ B - A - ~  B - B ~ A 

(12) 

Here J~b0(~ ) is defined as 

J@0 = i~bt0 +} + ( - i) +~o -) 

where we have first used (see Ref. 8) the Killing vector i c3/0f~ to 
decompose 4'o into positive and negative frequency parts 

+0 = +~o +' + ~ o  -} 

One can show that this inner product is f~ independent and gives a positive 
definite norm. Moreover, the Klein-Gordon-l ike operator/2/o is self-adjoint 
with respect to (12). With the introduction of the potential e 4 ~ [U -  1] the 
free q'0 (we recall that they represent Kasner solutions) become asymptotic 
states, and the interacting states g,, as from equation (6), corresponding to 
Bianchi models with potential, can be understood as excitation or scattering 
centers of the asymptotic states. In order to construct a Fock space we need 
also the multiparticle states. To obtain these states the first step is to 
perform a Fourier decomposition of the free states ~o in terms of coeffi- 
cients Ap and A 7 : 

d3p [Apexp(-ip~,ZU)+Ap exp(tp~,Z")] (13) 

Here ~k0, being a functional of a real metric g~j, is assumed to be a hermitian 
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operator and Ap and Ap are taken to be adjoints of each other, hermitian 
operators. The following commutation relations at equal time f~ on the 
momentum representation of the superspace configurations are valid: 

[A.,  A.+,] = 8(~)(p - p') (14a) 

[A,.A,.]  = [A; .A; . ]  = 0  (14b) 

Ap and A 7 are known as annihilation and creation operators, respectively. 
Having defined A and A + we can now construct a ground state 10) as a 
Fock vacuum state, that is, 

A 10) = 0 

(010) =1 

Let us notice that the ground state 10) is a functional of the metric gij and 
represents, in our picture, an ADM state with no quantum Kasner uni- 
verses. The multiparticle state space F., n > 1, is now defined as the Hilbert 

+ 
space of states found by taking the span of the action of all powers of Ap 
on 10), as usual for a Fock" representation. Finally the Fock space ~ is 
defined as 

oo  

~ = ~  
n ~ 0  

where ~'0 is the complex number space and o~- x is isomorphic to ff previously 
defined. 

At this juncture let us make a comment on the energy Ep.Ep was 
defined as the eigenvalue of the operator 2A in equation (11). This operator 
is self-adjoint on the space ~---~-t ,  and positive definite. The former 
property implies by the spectral theorem that Ep is a real quantity and can 
be used to label states since the operator 2A admits on ~ a complete set of 
eigenvectors. In the momentum representation (4) E~, from equation (11), is 
given by 

E. ~ = P~+ + P~_ 0 5 )  

and does not depend on H, therefore is conserved in f~ time. For these 
properties, since Ep is (i) real, (ii) the eigenvalue of a complete set of 
quantum states (U E ), and (iii) conserved on the coordinate manifold 
(/3+,/3_, f~), we are ~llowed to regard E;  as the "energy" of the free states 
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4'0. Ep is a measure of the expansion rate of Kasner solutions; however, it 
has nothing to do with what is normally called energy for a gravitational 
field. 

We now have to take into account the effect of the interaction e-af~[U 
- 1] on the asymptotic states spanning the Fock's space,~. To this purpose 
we shall define, in the next section, an S-matrix operator in the 
Feynmann-Dyson formalism. In this context, it is more convenient to work 
with a Lagrangian formalism. We start by introducing an expansion param- 
eter X in the expression for the ADM potential, in such a way that the 
physical potential is taken when X =1. Thus a Lagrangian which can 
generate by variational principles equation (9) is given by 

x) - ( z ) +  z;  x) (16a) 

Z) = -}4'(  z) m4'( z )  (16b) 

x) = - } x v ( z ;  x )4 ' : ( z )  (16c) 

~ ( Z ;  X) = } e - 4 ~ [ U ( Z ) - I ]  (16d) 

Equations (16) suggest that we regard the quadratic (in 4') Lagrangian L 0 as 
the free Lagrangian, and L 1 as the interaction Lagrangian, to be treated, in 
a perturbative way, by the known S-matrix techniques. To be more precise 
we take L1 as a c-number interaction, so that we shall work in an "external 
approximation" to the complete quantum field theory associated with the 
operator field 4'. The meaning of the Feynmann-Dyson formula for the 
scattering matrix developed in the next section is one of regarding higher 
powers of the Heisenberg operator 4' in S (corresponding to interactions 
between the field quanta themselves) as high quantum corrections in h to 
the free dynamics generated by the Kasner-like ADM states. We notice also 
that the Fock quantization of a Lagrangian like the one defined by (16) 
leads to a renormalizable theory. 

3. COMPUTATION OF THE TRANSITION AMPLITUDES 

The Feynmann-Dyson formula for the S matrix on the superspace 
reads (Lurie, 1968) 

where T and N stand for time and normal ordered products, respectively. 
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Let us notice that the ADM potential is not treated as an infinite potential 
well but it is always taken of the form (16d). Therefore, similarly to the 
problems of interacting Lagrangian (in external approximation) which are 
bilinear in the fields, one can take that the perturbative series are asymp- 
totic series. This means that the main contributions to the perturbative 
series come from low-order terms, so that we can restrict ourselves to the 
second-order contribution in the expansion parameter X. We get that, up to 
terms of order X2, the scattering matrix is given by 

S = I +  S o ) + S  t2) 

S < I ) = -  i__~ fd3Z1V(ZI,X)T( N[+2(Z1)]  } 
2 

S (2~ = - d3Zld3Z2V(Z, ,  X)V(Zz ,  •)X 

r( N[ +2(Za)] • N[ +2(Z2)]) (:7) 

In writing equation (17) we treated, as usual, Zal(Z, ~) in normal ordered 
form, where the ADM potential was taken to be an external interaction (c 
number). It is now possible to decompose the chronological products via the 
Wick theorem. This theorem gives 

T( N[ +2( Z l ) ]  ) = N[ +2( Z,)] 

T ( N [ + 2 ( Z : ) ]  N[+2(Z2)]  } = N[+2(Z, ) .+2(Z2)]  

- 4 i A F ( Z  : -  Z2)N[ +( Z1).+( Z2) ] 

+ (second-order vacuum bubble 
diagram contributions) 

where A F is the massless scalar Feynman propagator, defined by 

3 D ( z , -  ~ ) ~ ( z , -  z2) = - ~ '~ (z , -  z~) 

Moreover we observe that the badly divergent term due to the sum of all the 
possible bubble diagrams, corresponding to the vacuum-to-vacuum transi- 
tion amplitudes (01SI0), appears as an overall multiplicative factor, i.e., 
S =  (01S'10)Sc, where S C is the connected scattering matrix. Since it is 
possible to prove that (01S'10) is a trivial phase factor, we shall in the future 
omit all disconnected graphs and work with the connected part of the 
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scattering matrix only. Thus we can write 

s~ = a- ~ f d~zy(z,, x)~[ r 

x~ ffa~z, a3z2v(z, x)v(z~, x)N[,~2(z,),~(z~)] 
8 

+ ~ f fd~Z ld3Z~V(Z , ,X )aF(Z ,  - Z~)V(Z2, X) 

• N[~(Z,).~(Z~)] 08) 

We can now calculate the So-matrix elements between the "physical" states 
IP,q) and IP', q'). To this purpose we use the following formulas: 

1 
(q',  p'l N [~2(Z1) ] [p, q) - ( E q , E q ) l / 2  exp[i(q - q')Zl] 

1 
(q',  P'I N [~ (Z l )~  (Z2)] IP, q) - 

2(Eq,fq)  1/2 

• [exp( iqZ 2 - iq 'Z1)+exp(iqZ 1 - iq'Z2) ] 

1 
(q',  p'lN [ ~2(Z1)~2(Z2) ] [p, q) = 

4(Eq.Ep,EpEq) 1/2 

• { 4 e x p [ i ( p -  q ' )Z  1 + i ( q -  p')Z2] 

+ e x p [ -  i( q' + p ' )Z  2 + i( p + q)Z1] 

+ e x p [ - i ( q ' +  p ' )Z ,  + i( p + q)Z2] ) 

and we define I?(k, ~), 0 and AF(k) according to 

v(z,~,) 1 fd3ke, ,Zp(k,X) 
(2~r) 3 

0 - sign(~') 

i f d 3 k e x p [ i k ( Z x - Z 2 ) ] h r ( k ) ,  AF(ZI-- Z2) (2~)3 

1 
AF(k )  k2 ie 
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It then follows that 

(q,,p,iSclp,q)=l - i (X/2)  
( Eq,Eq)I/',~ ~:( q -  P" X ) -  

.[ f " (p -  q',X )f:( q -  p',X ) 

X2/32 

(Eq, fp,Epfq) I/2 

+2fZ(p+q,X)fZ(_q,+ p,,X)] 2~r3X2 

(Eq, eq): 
�9 fd3k~,,(I ,)[f ' (q ' -  k, X) f ' (k  - q, X) 

+ ( " ( - k - q ' , X ) f ' ( k  +q',X)] 

=1 1 [iX 
( Eq,Eq)l/2 -~ ("( q -  q',X ) 

+ 40~r3X2fd3k(k 2 _ ie)-lfZ2(k, X)] 

1 [ X 2 

(Eq,Ep,EpEq) a/2 L -~ (:(p - q'' X) I;'(q - p', X) 

OX2 ] 
+ ~ V(p + q ,X)V(p '+  q', X) 

(19) 

The probability amplitude of a transition from an initial state ]p, q) to a 
final state [p', q') 4: IP, q) is given by (q', p'lRIp, q), where the R matrix is 
defined by S,. = I + JR. Therefore from equation (19) we obtain 

-1/2[ i I?"( (q' ,p 'LR[p,q)=-(Eq'Eq) ~ q - q ' ,  X)X 
L 

+40~Wfd3kk-2 f '2 (k ,X)]  

+O[(Eq,Ep,E, Eq) -'/2] (20) 

To proceed further along our calculations and compute the integral appear- 
ing in equation (20) we observe the following point: in the ADM formalism 
the evolution of the universe point, for a given homogeneous mode, is 
governed by the fact that the potential barrier is moving, rather than by the 
actual change in shape of the potential walls themselves as time goes by. 
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Therefore in calculating the Fourier transform of the potential V, it is 
sufficient to restrict oneself to the temporal-dependent part, whereas the 
purely spatial (r-dependent)  part only contributes a form factor F on the 
momentum space. In order to compute the Fourier transform of V, the next 
point is to make the simultaneous analytic continuation ~2 -~ i~ and k o 
- i k r ( k  ~ k'), which leaves unchanged the representation (5). We then find 
in the linearized regime [at the order O(f~)] 

l~'(k', X ) = V( k0, ~ ) F(k ')  

(-~ ) ] i'17"-k'~ (21) e( , ; ,  x ) = f aa e - 4 a  e - i ~ k ~  k o - i * '  o = -~-~e 
a ~ i r  

where we made use of the following formulas: 

e x p ( - x ) -  ( l + x )  -1 

and 

dx  ~] / [F (~ , ) ] - ty" - l e - a - " ,  > f_u4[(a+ix )- e - i X y =  y 0 
(0 ,  y < O  

Here F(u) is the "/function of (i,) and F (k ' )=  f d 2 z [ U ( z ) - l ] e  i k ' ' .  
We can now calculate the momentum integral of equation (20), after 

insertion of the expression (21). This integral is, however, ultraviolet diver- 
gent, while the infrared divergence can be avoided by staying away from 
vanishing momenta. To evaluate it, it will be sufficient to introduce a 
high-energy cutoff A o, A o --* oo, and to remember that 

/(eX) 
- - - e  - u - l o g ( u ) e - " +  C Udx "-'fi- - u 

where C is the Euler constant (C = 0.57721). The momentum integral of 
equation (20) is then given, in the limit A o --* oo, by 

- 4 0 ~ r 3 ? d f d 3 k  d-2V2(k ,  ~) 

= + i07rS)~2A(o)fA~ + B ( A o )  

i O~rSA(o) f (Ao)[  1 _ A~]F_X(Ao ) 

+ + B(A o )  (22) 
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where we pose 

f ( A  o) = log(A0/2)exp( - A 0 / 2  ) 

g(A0)  = ( A 0 / 2 ) - X e x p ( -  A 0 / 2  ) 

A(Y~) = fxd2k'F2(k ') =- A(o ) 

B(Ao; X) = iO~r 5 ~_, (-1)"fA~ -.8/2 
n >11 

• fxd2k'k2"F2(k ') - B(Ao) 

B(Ao)~ E (- ' )"A(, , , (Y')[fA~ ze-*'~ 
n>~l 

At,,)(Y,) = fxd2k'k'2nF2(k ') = A(n) (23) 

It is now worthwhile to make a few points clear. The potential V contains 
an expansion parameter ?~. This parameter, as has already been remarked in 
Section 2, has been introduced in order to apply perturbative techniques, 
and does not represent a coupling constant of the model. The "physical" 
potential is V(Z, X)lx=~ so that at the end of any perturbative calculations 
one has to make, the limit 2, --, 1. Thus the "physical" transition amplitudes 
will be the ones with ~ = 1. The integral (22) up to the B-term diverges as 
A of(A o) for A 0 ~ or and multiplicative renormalization is then needed. 
Following the usual field-renormalization procedure, we rescale the wave 
function ~k(Z) according to ~ ( Z ) =  W1/2~n(Z ), where the subscript R 
means renormalized. The bare Feynmann propagator will then be written as 
a function of the renormalized one: /Xr(k) = WAF, R(k ), where Ar, R (k ) -  
1/(k  2 - ie) when Ik2[ ~ 0. The singular renormalization constant W is then 
fixed imposing the finiteness of the momentum integral (22), when replacing 
/~rbY AF, R" We obtain that if 

W - I - [  A(~ n ~>/1 ( -1 ) "A(" ) I f (A~  (24) 

as A o ~ oo, and the integral (22) becomes finite. An interesting circum- 
stance is represented by the fact that, in fixing the renormalization constant 
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W, we remove the classical arbitrariness of the cosmic scale factor R, which 
is present in the metric (1) and in the ADM potential. In fact the ADM 
potential is always defined up to a scale factor R which is included for 
convenience in choosing the units. The physical interaction Lagrangian, that 
is to say the one expressed in terms of the renormalized quantities, will be 
written as 

*'~/phys(Z) = --  I W R 2 V (  Z ,  1) ~phys (Z) (25) 

so that the renormalization procedure shifts the scale factor from R 2 to 
WR 2 and compels us to regard WR 2 as a coupling parameter. 

Neglecting the terms of o r d e r  (Eq,Ep,EqEp) 1/2, the renormalized 
"physical" reaction amplitude between the states Iq') and Iq) is therefore 
given by (for q'4: q) 

i (Eq,Eq) - 1/2 
R q,q =-- ( q ' l R l q  ) R e .  = - -~ • V( q ' -  q, 1)+ (finite parts) 

(26) 

so that, by means of equation (21), the probability of transition Pqq, takes 
the form [up to the form factor F2(q ' -  el)] 

1 
pq,q --IRq,ql 2 c~ E~,E~ e -AL" (27) 

where A E  =- ]Eq - Eq,]/2. 
The transition amplitudes between given physical states describe the 

phenomenon through asymptotic states. In the case investigated here the 
asymptotic states are represented by an infinite ensemble of independent 
quantum Kasner universes. The intermediate states that mediate these 
asymptotic states can then be interpreted as scattering centers or as excita- 
tions of the quantum Kasner universes and are associated to vacuum 
Bianchi models with nontrivial ADM potential. One sees from equation (27) 
that the reaction probability decreases as Eq, increases, and one would 
conclude that the transition to outgoing large Eq, state is very unlikely by 
quantum effects. This means that the evolution is stable only for ADM 
asymptotic states characterized by low values of the "energy" Ep. The 
quantum fluctuations present in the interaction zone can completely destroy 
those Kasner configurations which are infinite in Ep. This phenomenon 
could be analogous to vacuum tunneling of instantons, with jumps between 
nonhomotopically connectable states. From the point of view of cosmology 
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this picture shows the "unpredictabil i ty" of the evolution in the superspace 
between infinite energy Kasner configurations. 

This third quantization formalism of gravity faces two basic diffi- 
culties: (i) the breakdown of causality. In fact, we are left with the 
simultaneous presence at the same time s of several physical universes all 
equally probable from the quantum mechanics point of view; (ii) the 
existence of (unphysical) transitions between multiuniverse states having 
different occupation numbers. Of course, these do not occur if one requires 
the conservation (in the super-space-time) of the occupation number 

+ ZpApAp. 
Let us conclude by noticing that, in principle, this program can be 

applied to more complicated, inhomogeneous geometries, provided that the 
space-time has topology Z • R, where Z is a three-dimensional manifold, 
and supports an ADM formulation. In this case in addition to equation (6), 
one would have another weak relation which would be associated with the 
classical generator of the diffeomorphisms on Z. This reflects the gauge 
invariance of the gravitational field. In the case of homogeneous geometries 
this gauge freedom is automatically frozen, owing to the existence of a 
natural group of isometries, which is the one furnished by the Bianchi group 
acting on Z. 

4. CONCLUSIONS 

To answer the question of what the quantum fluctuations in a certain 
gravitational problem can be, we have reduced the corresponding field 
theory to the quantum mechanics (" the model") of a certain functional of 
the effective metric gij which is naturally given by the Hamiltonian formula- 
tion of cosmology. With this procedure we have by-passed the tremendous 
problems connected to the ultraviolet divergencies of the metric operator of 
quantum gravity. The fact is that the model here presented can, at most, 
present renormalizable self-energy (mass) insertions. However, as it is 
known, the renormalization procedures by subtraction of the ultraviolet 
divergencies have a physical meaning in that they allow to define the bare 
charges, masses, and so on which are present in a Lagrangian formulations 
as the observable quantities. This last aspect is missing in our approach, as 
well as in recent similar ones (see, e.g., Ref. 5). However, in quantum 
theories, there is another aspect besides the one of definibility of the 
quantum observables. This is the problem of defining a unitary evolution of 
quantum states. In a now old literature, this was the point of view taken, for 
instance, by the semiphenomenological, S-matrix, approaches to the models 
of strong interactions between elementary particles, which are not formu- 
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lable in the framework of the usual perturbative theory of quantum fields. 
Naturally, our third quantization procedure is motivated for a nonrenormal- 
izable theory, like Einstein theory of gravity, where it is not yet possible to 
give, at the same time, a description of quantum states together with their 
definibility as states forming renormalizable expectation values. We can 
only then privilege one aspect of the quantum formulation of the gravita- 
tional field. With the present work we developed a model and a formalism 
that allows us to describe the quantum evolution of a particular type of 
gravitational field, that is, the one described by vacuum geometries of 
Bianchi type A. 

From our point of view, the stronger suggestion of this work is the 
possibility of treating certain vacuum gravitational solutions as excited 
states of Kasner solutions. In this sense we can note a certain analogy with 
nonlinear field theories that present solitonic solutions as collective excita- 
tions of quanta. Maybe the problem of quantizing the gravitational field 
could be approached in an analogous fashion, quantizing only inside classes 
of solutions of the Einstein equations (Martellini, 1979). 

The program proposed in this paper is essentially a third quantization 
of gravity. As such it "would represent a radical departure from the 
conventional wisdom of ordinary quantum field theory" (Kuchar, 1981) and 
has therefore never been seriously considered by physicists. In view of the 
lack of success to data of any other program for quantizing gravity, this one 
should not be rejected out hand. For instance, the application of this 
program to "scalar QED" in the temporal gauge (A~ [0) = 0) gives a wave 
equation for the state functional ~b(fl, s  of the form 

(28) 

213 = 0 2 0 2 
+ oB*a------d 

V( fl ) - fl*(m 2 + p2 + ieA,p, + e2A~ )fl  

Here the "superspace-coordinates" fl* and fl are related, respectively, to the 
complex boson fields ~* and ~. Moreover, the c numbers m and Pi (they 
stand, respectively, for the mass and the spatial momenta for the free 
bosons of the "first and second quantization" of the theory) must be 
understood as arbitrary parameters for the functional ~b(fl,s Having 
assumed (fl*, fl) as operators, equation (28) formally describes a "second 
quantization" of the scalar QED. Then, the "third quantization" formalism 
previously developed for the gravitational field starts when one makes the 
state functional of (28) an operator-valued distribution. We think that 



Third Quantization Formalism for Hamiltonian Cosmologies 249 

~(f l ,  f~) is related in a same way to the tree approximation of the path 
integral of the scalar QED (in the temporal gauge). Therefore the S-matrix 
technique discussed in the above sections for the "Heisenberg field opera- 
tor" associated with ~b, is only a perturbative trick which reflects in this 
contest the ordinary loop expansion around a saddle point of the path 
integral. However, many questions remain to be asked and answered, in 
particular with respect to the application of this formalism to the standard 
quantum field theory, and the work sketched above can only be regarded as 
the germ of a new research program on the "quan tum geometry," which we 
think is far from being dead. 
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